Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Zhen-Feng Chen, ${ }^{\text {a }}$ Yong-Rong
Xie, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ Suchada Chantrapromma, ${ }^{b_{*}} \boldsymbol{\dagger}$
Ibrahim Abdul Razak, ${ }^{\text {b }}$ Ren-Gen Xiong ${ }^{\text {a }}$ and Xiao-Zeng You ${ }^{\text {a }}$
${ }^{\text {a }}$ Coordination Chemistry Institue, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

+ Permanent address: Department of Chemistry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

Correspondence e-mail:
suchada@ratree.psu.ac.th

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.133$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[(3-Pyridylamino)methyl]phenol

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, crystallizes in the noncentrosymmetric $P 2_{1} 2_{1} 2_{1}$ space group giving crystals showing a second harmonic generation (SHG) property. The crystal structure consists of discrete molecules and forms a threedimensional network through intermolecular hydrogen bonding.

Comment

The title compound, (I), is shown in Fig. 1. These molecules are packed in a non-centrosymmetric structure, probably as a consequence of the two hydrogen-bonding interactions that are found involving the phenol hydroxyl group, which acts as both donor and acceptor, the amino group acting as donor, and the pyridine N atom acting as acceptor. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds join the molecules 'head-to-tail' in chains running along the [001] direction with a $C(11)$ motif (Etter et al., 1990), while $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds join the chains along [010] with a $C(8)$ motif, the combination of the two chains resulting in sheets (see Fig. 2).

All bond lengths and angles are in the normal ranges. The dihedral angle between the two aromatic ring planes is $63.4(2)^{\circ}$. The conformation along the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 7-\mathrm{C} 6$ central chain is given by the torsion angles $\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 7$ of 171.6 (3), $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$ of 174.1 (2) and $\mathrm{N} 1-\mathrm{C} 7-$ $\mathrm{C} 6-\mathrm{C} 5$ of 128.7 (3).

Experimental

4-Hydroxybenzaldehyde ($6.15 \mathrm{~g}, 50 \mathrm{mmol}$) and 3-aminopyridine $(4.71 \mathrm{~g}, 50 \mathrm{mmol})$ in 100 ml of toluene were refluxed with a DeanStark trap for 12 h . Toluene was removed in vacuo, and the residue was dissolved in 100 ml of ethanol. $\mathrm{NaBH}_{4}(3.70 \mathrm{~g}, 100 \mathrm{mmol})$ was added to the ethanol solution and the resultant mixture was stirred at room temperature for 18 h . Excess NaBH_{4} was quenched with water and then with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at 343 K . A pale-yellow solid powder was obtained through filtration (yield: $7.20 \mathrm{~g}, 72.0 \%$). Crystals suitable for single-crystal X-ray diffraction studies were obtained by hydrothermal treatment of $\mathrm{W}(\mathrm{CO})_{6}$ and 4-[(3-pyridinylamino)methyl]phenol in methanol at 353 K . The structure of the title compound was confirmed by IR analysis [3338(s),3021(w), $2804(w)$,

Received 20 March 2001 Accepted 21 March 2001 Online 12 April 2001

Figure 1
The structure of (I) showing 50\% probability displacement ellipsoids and the atom-numbering scheme.
$2680(w), 1597(s), 1576(s), 1512(s), 1463(m), 1341(m), 1320(m)$, $1276(s), 828(m), 790(m)$ and $698(w)]$. Tests on the powdered title compound show a positive signal for SHG.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
H atoms treated by a mixture of independent and constrained
$w R\left(F^{2}\right)=0.133$
$S=0.99$
2308 reflections
144 parameters

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 3$	$1.363(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.322(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.368(3)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.351(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.453(3)$		
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{H} 1 A$	$113(2)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 B$	$112(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7$	$120.3(2)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 10$	$117.5(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{H} 1 B$	$120(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N}^{\mathrm{i}}$	$0.98(4)$	$1.75(4)$	$2.723(3)$	$170(4)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	$0.89(3)$	$2.26(3)$	$3.133(3)$	$166(3)$

Symmetry codes: (i) $\frac{1}{2}-x,-y, z-\frac{1}{2}$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

After checking their presence in the difference map, all H atoms were geometrically fixed and allowed to ride on their attached atoms, except for the H atoms involved in hydrogen bonding which were refined isotropically. It was not possible to define the correct absolute configuration as all the atoms were too weak anomalous scatterers of Mo $K \alpha$ radiation.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick,

Figure 2
Packing diagram of (I) viewed down the a axis. $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond contacts are shown as dashed lines.
1996); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

This work was funded by The Major State Basic Research Development Program (grant No. G2000077500) and the National Natural Science Foundation of China. The authors would like to thank the Malaysian Government and Universiti

Sains Malaysia for research grant R\&D No. 305/PFIZIK/ 610942.

References

Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

